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1-INTRODUCTION

Einstein's theory of General Relativity tries to explain what gravity is, how it is produced, how it 

behaves  and what  effects  it  has.  Another  theory  that  had the same purpose  was the  law of 

universal  gravitation  that  Newton  postulated  in  1686.  In  fact,  Einstein’s  Theory,  applied  to 

situations where gravitational fields are weak and the velocities of the falling objects are not 

relativistic (much smaller than the speed of light), reproduces Newton’s Law. This elucidates the 

limitations  of  Newtonian  Theory  and  at  the  same  time  demonstrates  that  the  two  theories 

perfectly agree with each other in regimes where they can both be applied. However, the two 

theories  give  very  different  explanations  of  what  gravity  and  space-time  conceptually  are. 

Newton's approach gives great accuracy in calculations and only the most modern technology 

may  notice  the  error;  due  to  that  general  relativity  was  not  noticed  and  demonstrated1 

experimentally  until  the  late  twentieth  century.   Two of  the  most  known tests  are  the  light 

deflection observation from stars near the Sun and the precession of the perihelion of Mercury, 

which will be discussed in this paper. 

The theory of General Relativity was published by Albert Einstein in 1916, i.e, eleven years after 

the  theory  of  Special  Relativity,  which  was  also  proposed  by  him.  Einstein  may  not  had 

discovered the second without the first theory, since there is a close relationship between them; 

in fact, special relativity is a special case of the general one (hence the name). 

The main objective of this paper is to explain the implications of one of the solutions of GR2, the 

so-called Schwarzschild metric or solution, in honor to Karl Schwarzschild, the scientist who 

discovered it only a few months after the publication of Einstein's theory.  

Addressing the main issue, part 5, implies discussing the key points of General Relativity, ie, 

giving an idea of the main postulates and equations. After that, the Schwarzschild metric will be 

presented and finally the effects expected on the motion of Mercury will be examined. In the 

next section it will be discussed how Einstein interpreted the concept of gravity.

1 Actually impossible to prove a theory experimentally as it would require endless experiments. Theories also have 

to be tested to verify its effectiveness and that was a big challenge for the scientific community during the twentieth 

century. A good book that explains all the experiments related to General Relativity is Will (1986) - Was Einstein 

Right?-.

2 GR means General Relativity as SR means Special Relativity.



2. GRAVITY AS CURVATURE

G.R. starts from an idea called equivalence principle, which states that there is no difference 

between being floating in space, free of gravity, and under the effect of a gravitational field but 

in free-fall. This principle also says that remaining on the surface of the earth is the same as 

being subjected to a constant acceleration motion, as it might be inside a rocket. Therefore, the 

objects that are placed on earth would actually be the non inertial, and free falling would be the 

inertial ones. This means that the particle’s natural state (when there are no forces acting on it) is 

to fall freely. Another key point is that all bodies fall equally regardless of their mass. We know 

that if a force is applied to an object and measured the resulting acceleration, its mass can be 

obtained by Newton's second law. Also, if we measured the weight of the same object with a 

balance and dividing it by the gravity  g,  we will obtain the mass measured at the beginning. 

Actually it is not evident that this assumption must be correct, scientists did a lot of tests that  

showed, with great  accuracy,  that  it  was true.  This suggests that gravity has less to do with 

“bodies” rather to a property of space surrounding the "source”. 

The main objectives of the GR are to give an explanation that does not imply the action of any 

force as gravity, that the effect doesn’t dependent on the composition or mass of the body and to 

show that the natural state is free-falling; all of this being consistent with the laws the S.R.

Trying to explain all these concepts is only possible if we consider time in the same coordinate 

system as in special  relativity  (t,  x,  y,  z).  Although we consider that we are static  when we 

haven’t  a spatial velocity, we are moving at high speed over time. 

Fig. 1 shows that bodies that move freely through the space-time seem to fall. In Fig. 1.a the 

object O’ is going only in the time direction (following the red line). In Fig. 1.b the object O has 

a significant mass and O’ is falling in but following also a ‘straight line’. The effect is explained 

by the reason that the two temporal axes (the respective observers) are not parallel due to the 

space-time deformation caused by the presence of a mass. Formally said - inertial systems follow 

a  geodesic  of  space-time  unless  a  force  acts  on  them  -. This  is  a  key  point  of  Einstein’s 

explanation of what gravity is. As a clarification, a geodesic is the shortest line between two 

points on a curved surface or volume. Mathematically it is represented as a curve that parallel 

transports its tangent vector.

2.1   Covariant     Derivatives  

How  can  one  infer  if  a  vector  changes  or  moves  through  parallel  coordinates  if  they  are 

"deformed"? The answer is keeping in mind that the basis vectors (vectors that set the coordinate 

axes) change along one direction, so its derivative isn’t zero.



If space is deformed and base vectors change, it may happen that two vectors have the same 

direction but different components simply because they are at different points of a reference 

system.  The  goal  now  is  to  describe  mathematically  the  trajectory  of  a  free-falling  body 

assuming that  it  follows a  geodesic.  First,  we define  the  derivative  of  a  vector  in  which  to 

consider the basis vectors vary and consequently must be derived. This concept of non-constancy 

appears  in  Eq.  3  where  axes  and  vectors  carry  sub/superscripts  (Alpha,  Beta,  Gamma). 

Henceforth this labeling indicates the various components of the element (t, x, y, z) it can also be 

specified with numbers from 0 to 3 with 0 = t, 1 = x, 2 = y, 3 =z.

       (3) 

With V as a vector to be derived, e as the basis vectors, x as the coordinate axes.

It  is  important  to  remember  that  throughout  this  paper  will  use  the  Einstein  summation 

convention,  where if  two terms  have  equal  indexes  but  one as  a  superscript  and other  as  a 

subscript, then it's understood a summation over them, as shown below:       

                   (4)

Eq.3 is very important in differential geometry, in curved space the basis vectors change at every 

point.  To  simplify  are  used  symbols  that  carry  the  name  of  its  inventor  Elwin  Christoffel, 

mathematician and physicist of the nineteenth century. The Christoffel symbols are defined as the 

partial derivative with respect to the axis of the base vectors (Eq. 5),

                                (5)

The new symbol has three index vector indicating the basis to derive (Alpha) the axis on which 

derives (Beta) and the axis that represents the variation (range) and that it is only value or a 



component of the vector base. Thus the derivative with respect to the axis of the vector V, would 

be simplified as follows:

                                  (6) 

  Interchanging index gamma and alpha from the last two terms of Eq. 6 we get:

             (7) 

         (8)

The part in brackets in Eq. 8 is called covariant derivative and is defined as: 

       (9)

The geodesic curve can be defined as the one that parallel-transports its own tangent vector U. 

Therefore, the covariant derivative of the vector along the geodesic is zero. This means that the 

components of the vector changes only due to the change in basis vectors.

Next  step is  to  derive  the  vector  U along the parametrization  determined  with lambda.  The 

tangent vector is defined as:

     (10)

If  the premise is  that  the covariant  derivative  with respect  to  the parameter  (lambda)  of the 

tangent vector must be zero because it is a geodesic, we find that:

      (11)

Using the definition of tangent vector and Eq. 11 we have:

                  (12)

This is the geodesic equation and is of great importance since it explains how do bodies move 

under the action of gravity. However the application of this equation will be left for later on.

Actually there are other ways to derive the geodesic equation, such as founding it by determining 

that it is also the shortest trajectory between points of any given space-time.

2.2   Parallel     transport  

It  was  previously  shown that  the  geodesic  curve  parallel  transports  its  tangent  vector.  This 

transport displayed graphically in a sphere as it has a curved surface (a test that would be that it’s 

not possible to cover with paper a ball without getting wrinkles). If you complete a triangle on 

the surface of a sphere you will notice that the interior angles are greater than 180 degrees and if 

you transport a vector along the three sides and return at the start you will detect  some deviation  

from the original vector (Fig. 2): 



This deviation can be calculated and depends on the distance along the inner area and the type of 

curvature.  From that  can  be  found a  tensor  that  relates  these  concepts  (area,  basis  vectors, 

Christoffel symbols, etc.) and gives the variation on the initial vector. The calculation of this 

tensor requires a long series of messy calculus so it’s not shown here, on the other hand, we will  

discuss the consequences of this and other tensors that will appear hereafter. This function is 

called  curvature  tensor  or  the  Riemann  curvature  tensor  in  honor  to  the  nineteenth  century 

mathematician known for his contributions to differential geometry.  

Riemann tensor has the following form and is gotten from the Christoffel symbols:

     (13)

In the Eq. 13 appear some ","  at the right of the first two terms, and they mean, hereinafter, left 

term’s derivative about the axis with the exponent that is indicated at the right of the comma. 

This tensor is very important because it shows the curvature in a more direct way, therefore, in a 

flat space R is zero. 

The reason that the tensor depends on the Christoffel symbols and these on basis vectors, prove 

that one can know if he is in a curved space-time by doing experiments as transport parallel Fig. 

(2) or simply by calculating the Riemann curvature tensor. Everything can be done noticed from 

the "inside" of the space so you don’t have to leave it.

Now that we have a curvature tensor, it wouldn’t be strange to think that if the theory of General 

Relativity  tries  to  explain  gravity  as  a  curvature  of  space-time,  the  final  formula  should  be 

something like “curvature = constant ·mass-energy” because the curvature can be caused by the 

mass  and/or  energy.  The  Riemann  tensor  expresses  the  curvature  but  there  is  too  much 

“information” in it because to express the "mass-energy" it’s needed only a tensor of order two 

(with two index) and the tensor R has four.  There is  a mathematical  operation called index 

contraction that implies  a summation over some components (giving values to some general 

indexes of the tensor) made in Eq. 14:



                   (14) 

A contraction can be made on any other possibilities but all canceled at the end, this new tensor 

is called the Ricci tensor (Rij).

Is said that Einstein tried his final equation with the latter curvature tensor, but it did not work as 

it gave contradictory results, then he modified it to create a new tensor called the Einstein’s 

tensor (G) to substitute the Ricci’s one. Finally, he expressed the mass-energy tensor by T and 

the constant was found to be k = 8  (in natural units� 1). Finally, the field equation was:

     (15) 

With G  as:                  

      (16)

This equation allows  to determine the deformation of a field by T , also and the inverse. Note 

that both  T and  G have many components and in each case or solution one must treat them 

differently. Be also aware that here G is the Einstein’s tensor, not the gravitational constant.

The next part will deal mainly the Schwarzschild solution and the Newton case.

1.3-SOME GR’s SOLUTIONS

In this section we will  discuss some of the solutions that General Relativity has. Mainly the 

Schwarzschild solution and the Newtonian case. This is the last part before the reaching the key 

point of this article,  Mercury’s orbit.  

Now will be introduced the concept of giving a metric to a space-time, as it is crucial to calculate 

distances, trajectories and curvature. With the metric tensor can be solved the geodesic equation 

or can found the Riemann tensor and consequently these which are obtained with it. The metric 

tensor comes from the coordinate system, has a matrix structure and are diagonal, at least which 

are used here. This tensors, generally called g, are produced by the dot product between basis of 

vectors of a given coordinate axes:

    (16)

Examples of metric tensors are:

1 Natural Units are where the speed of light c and the gravitational constant G (among others) equal to 1. 



the first one is the Newtonian metric, the second one is the Minkowski’s one (as in SR) and the 

last  one  is  the  metric  for  spherical  coordinates.  To  calculate  intervals  between  points,  i.e 

invariant distances, the metric is used as follows. Eq. 17 is called the line element:

        (17)

where as always  d indicates a differential in any any axis, the  g with sub-index indicates the 

component of g and  ds² as the total distance between events (the interval).

The Minkowski metric above is a solution of Einstein’s equations in the absence of sources, i.e.,  

a vacuum solution of GR with no curvature.  It is in fact the unique vacuum in the absence of a 

cosmological constant. As we already discussed, SR is simply physics in rigid Minkowski space-

time, while in the presence of massive objects the space-time becomes curved and the metric 

deviates from the Minkowski metric, giving rise to general relativistic effects.     

It is important to treat another metric that is found by solving the Einstein’s equations for a 

special and concrete case but also a very common one. This metric is called the Schwarzschild 

metric, and is the metric which expresses the space-time outwards a gravitational source. It’s 

usually derived from the spherical metric and is found considering that the only source of gravity 

is a spherical object, in consequence, that the gravitational field has spherical symmetry, also that 

the whole system is static (in space), i.e invariant in time. That the metric should be based on the 

mass  and  radius,  since  for  zero  mass  and  infinite  radius  the  metric  must  be  reduced  to 

Minkowski  (i.e  to  the  SR).  The  Schwarzschild  solution,  based  on  spherical  spaces,  can  be 

expressed by the line element in Eq. 18 as:

      (18)

with:

      (19)

In Eq. 18 appears G as the gravitational constant (do not to confuse it with the Einstein tensor), 

M the mass of the source, and  r  as the radial distance between the source and the coordinate 

system.

Terms in gold are the "added" to the Minkowski metric in a spherical space and are functions 

that are due to the curvature of space-time. This tool is very useful and allows to predict the 

behavior from the time and space under the effect of gravity. Since Christoffel symbols depend 

on the metric, now the geodesic equation can be solved for free falling objects.

We will  see that  the motion a particle  that  follows a geodesic can’t  be described accurately 

enough by the Newtonian equations.



We should consider  that  the object  moves in  with a  non-relativistic  speed,  i.e  that  the time 

components of the velocity are much larger than space ones. Starting with the geodesic equation 

and using  as the parameter, and also as the proper time of the free-falling object: 

                 (20) 

If the components of the geodesic equation are mostly time-like, we can simplify Eq. 20, taking 

that V  >> V¹.  It can be seen that the significant part of the Christoffel symbols comes from V .⁰ ⁰  

Because the objective is to represent how the body’s radial velocity changes, can be written Eq. 

21 according to this. As always (t = 0, r = 1 ...):

           (21) 

Special Relativity shows that V   1 for small space velocities so the Eq. 21 simplifies to:⁰ ≃

         (22)

Now it’s just left to calculate the Christoffel symbol, on the right hand side of the Eq. 22. This is 

done from the metric, which in this case is the Schwarchild one:

            (23)

In  Eq.  23  appears  the  comma  notation  (",")  in  the  last  term  and  indicates,  in  this  case,  a 

derivative  with  respect  to  x¹.  It  also  appears  g¹¹  and  that  is  only  the  inverse  of  g11.  If  the 

components of the metric are replaced by the corresponding values we get:

       (24)

The last term of Eq. 24 can be neglected in a first order.  This approach would give Eq. 25:

     (25)

Replacing the Christoffel symbol in Eq. 22:

                        (26)

where “a” is the acceleration. Eq. 26 is predicted by Newtonian theory, and is the well-known 

Universal Gravitation law, but in this case derived from GR. This shows that the speed at which 

objects  fall  does not depend on their  mass, as expected.  It is important  to stress here that it 

required to neglect several terms to find exactly the same equation as in the Newtonian case. For 

higher speeds or for a source with a huge mass, the equations would differ because the terms that 

have been neglected in Eq. 25 would be significant.

Now lets trade another of the predictions that GR has: under the effect of a gravitational field the 

time of a non-inertial observer (who is near a static source) becomes slower than for another 

inertial observer free of gravity, i.e, at nearly infinite distance r from the source.  



Let’s calculate how significant this is using only the Schwarzschild and Minkowski metrics (the 

second can be obtained as a limit of the first  when the radius r tends to infinity). Imagine two 

events separated only temporarily on earth, for example the birth of a person and his death. It is 

known that an average person lives about 82 years. The goal now is to calculate how much time 

the person living on earth would win compared to someone who has gone free of gravity far 

away. The two line elements are written below:

           (26)

      (27)

In Eq. 26, 27 the red part is zero because the interval is only temporal. For both the proper time 

(which  seems  to  pass  for  them)  is -ds≡d .�  For  the  observer  at  infinity  d  � is equal  to  the 

coordinate time  dt,  but for the observer on earth this is not true. For the second observer the 

proportion between d  � and dt is given by the following equation:

           (28)

As dt is the time coordinate, which coincides with the proper time of the inertial observer, we 

can use Eq. 28 as the relation between the time of the observers. The part in brackets of Eq. 28  

has no units. Kilograms should be converted into meters as natural units are used here:

Now we can calculate the constant of proportionality between the two observers’ times:

Using these equations we find the time difference between an observer that spends 82 years at 

radius  r =earth radius and another observer at r  =  infinity. This difference is only about 1.8 

seconds for a lifetime on earth! This gives an idea of how small is the curvature caused by our 

planet and the relativistic effects it creates.



4. MERCURY’S PERIHELION PRECESSION.

During more than two centuries Newton's theory of gravity and Kepler's laws were perfectly 

adequate to calculate and describe the orbits of the planets in the solar system. An example of the 

effectiveness of Newton's theory is the discovery of Neptune in 1846. Uranus had periods of 

acceleration and others of slowdown relative to a Newtonian orbit along its path around the Sun, 

this suggested the existence of a nearby planet that was producing these irregularities to Uranus. 

Two scientists,  Le Verrier and John Couch Adams, did a laborious task to calculate the exact 

position of the planet at a certain time using only classical mechanics. The objective was to see 

through  the  most  powerful  telescopes  to  look  for  this  new  planet.  Actually,  Le  Verrier's 

prediction  was  very  accurate,  and with  only  1º  of  error  the  planet  was found where  it  was 

expected.  Afterwards, Le Verrier tried with another planet that was moving strangely, it  was 

Mercury. He had observed that the orbit was rotating on itself, i.e., the perihelion 1 was rotating 

by some fraction of a degree at each period, see Fig. 3. He thought of the existence of a new 

planet, as with he did with Neptune. First he had to consider the perturbations caused by all other 

planets  like  Venus,  Earth,  etc...  So  from the  initial  5600  arcsec/century  (1  arcsec=  1/3600 

degrees) there were only 43 arcsec/century unexplained.

1 The perihelion of an orbit is the nearest point from the planet to the star during its trajectory.  Also there is the 

aphelion which is the opposite of the perihelion as it is the point where the distance is the largest.



Le Verrier made some calculations to determine the characteristics of the hypothetical planet 

which he named Vulcan. After extensive research no one could find it so the hypothesis was 

refused. Another possibility that could explain the precession was that the sun was not really a 

perfect sphere (a little bit like the earth), i.e, a globe with the equatorial diameter wider than the 

polar. 

Scientists as  R. Dicke, M. Goldenberg, and H.Hill, among others, investigated the Sun’s shape 

for more than 45 years but finally there wasn’t any agreement on the final result due to the large 

experimental  error  they  had.  The  newest  data  comes  from the  NASA’s  X  and  Gamma-ray 

telescope  (RHESSI)  in  November  of  2008.  It  measured  8.01  ±  0.14  miliarcsec,  which 

corresponds to 6km of difference between the polar and equatorial diameter. The oblation that 

NASA measured would not be enough to  consider it the cause  of the precession of Mercury's 

orbit or even to have any significant contribution to it. In 1915 A. Einstein was finishing his new 

theory of gravity, and he found that his theory explained the planetary movements in a slightly 

different way. In fact, he predicted the precession of the orbits. For Mercury the prediction was, 

surprisingly,  about  42.98''  /  century,  the  amount  unexplained  by  Newtonian  theory.  The 

calculation comes from deriving the Schwarzschild metric and the geodesic equation to find the 

radius of any orbit as a function of the angle, momentum, mass, etc. To derive the formula one 

has to keep in mind the condition that the modulus of  p (momentum 4-vector) is always equal to 

-m² regardless of the observer. In fact, the modulus comes from the line element (Eq. 18) since a 

4-vector is some interval in 4 spacetime dimensions. The objective now is to calculate the exact 

amount of precession Mercury from what we have seen during the paper.

 For simplicity are defined the following constants, E and L:

      (29)

      (30)

It should be taken into account that  (same for index Phi). If the condition is that the 

module of p is constant, it’s true that:

              (31)

with  and   as any orbit can be described in one plane, so we can choose 

Theta=0. Taking into account the Eq. 29 and 30 can be combined with Eq. 31 to derive Eq. 32 

that determines the variation of the radius relative to the parameter Tau or proper time along the 

orbit / trajectory:

      (32)

To calculate the precession, it is interesting to study the variation of the radius depending on the 

angle, this is done by dividing two known derivatives:



     (33)

As can be seen in Eq. 33 the blue fraction comes from the definition of L and its relation with the 

angular velocity (the blue term on left of the second equals sign).

Interest now focuses on solving this differential equation for r in terms of φ. Two approximate 

solutions of interest can be found, describing accurately the Newtonian and the relativistic cases. 

In the Newtonian case, terms with 1/r³ are neglected and in the relativistic solution, terms with 

(1/r  -  M/L²)³  are  ignored  (these  are  negligible  considering  that  the  planet's  orbit  is  nearly 

Newtonian). We can guess the general form of the final equation knowing that it should be a 

cyclical process as the radius, after a period, is again the same (although it was an elliptical path). 

It’s not surprising that the function is a kind of a sinusoidal equation:

     (34)

The constants  r',  A  and k are  combinations  of  L,  E, M  and  B is  an initial  angle.  The most 

interesting part here is the constant k, written in green in Eq. 34. The radius oscillates around r' 

each time that the term inside the cosine is equal to  2π. In the Newtonian approximation the 

constant k is equal to 1 and so, as the orbit goes around 2π, the planet returns at the same point. 

In the relativistic case, however, k<1 and, since radius is the same once kφ=2π, the planet must 

revolve  by  more  than  2π to  return  to  the  same  radius.  This  is  exactly  what  we  mean  by 

precession of the planetary orbit.

The constant k has the following value (which is found from Eq. 33):

      (35)

The angle needed to complete the period of r , taking the approximate value of k in Eq. 35, is:

                   (36)

So the angle difference with the full turn (2π) is the delta Phi as the value of the precession:

       (37)

We can see that the precession of the perihelion is a prediction for any orbit in general, the study 

of Mercury it’s because it has a higher deviation due to its near orbit to the Sun. 

Now we can proceed to calculate the exact precession for Mercury based on Eq. 37. The first  

step is to simplify the above equation by introducing L²=Mr, a value found for nearly Newtonian 

and circular orbits like Mercury. We then can reduce Eq. 37 and replace it with the values of the 

average radius and mass of the Sun to find out the exact angle (in natural units):



(38)

This last result is the extra angle for each revolution.  To see how much small is this value you 

can think about the angle we would measure for an ant 6km away. Therefore this deviation is 

usually expressed in units of arcsec/century:

The 43’’ are what was left to explain of the total observed 5600’’. They are those degrees that Le 

Verrier could not attribute to any planet, the deviation that Dicke and Goldenberg could not 

explain by the Sun’s oblation, those that the Newton’s theory of Universal Gravitation did not 

predict. The 43’’ that only GR could give the answer to. 

5. CONCLUSIONS

Finally,  we  have  demonstrated  that  Mercury,  and  in  fact  any  other  planet,  should  have  a 

precession of its  perihelion when orbiting around the Sun. It  was necessary to introduce the 

theory of General Relativity from the beginning with basic concepts to be able to follow and 

understand the process of deriving the formula for the precession. We first treated the theory’s 

postulates, the principle of equivalence and differences and similarities with Newtonian gravity. 

Then we dealt with one of the key concepts of the theory, the geodesic equation, the parallel  

transport and curvature of space-time. Later we approached the curvature tensors and finally the 

Einstein's field equations and their implications. Also the Schwarzschild solution as a key to find 

out the precession’s equation and the Newtonian case. Finally we derived the perihelion’s shift 

formula, and we could solve it for Mercury.

A conclusion of what has been traded throughout the paper, is that the theory of general relativity 

introduced a completely different way of seeing gravity: the gravitational forces disappeared and 

were replaced by space-time warping. The new theory introduced a lot of new concepts as black 

holes,  gravitational  radiation,  gravitational  time  dilation  and  the  redshifting  of  light,  the 

cosmological constant, etc. The precession prediction gave some credibility to Einstein's theory 

in its early ages as it was one of the first pieces of observational evidence supporting the theory. 

The prediction was only made by GR because this theory of gravity is not just an alternative to 

the  Newtonian  one.  Einstein’s  theory  includes  the  classical  planetary  motion  as  a  first 



approximation when weak fields are studied, so, it’s logical that when looked at high precision 

the differences between the two theories emerge. GR is a theory that included special relativity, 

but unlike it, GR was not found from any test or experimental evidence.  One could say that  

scientific method was applied somewhat at the inverse... first the theory was published and then 

scientists looked for predictions to subject it to experimental tests.
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